Metabolite Biomarkers of Response (BoRs) To Optimize Metastatic Breast Cancer Treatment

Cancer and Evolution Symposium

Elizabeth O'Day, MPhil, PhD Oct. 16th, 2020

Disclosures

I am the CEO and Founder of Olaris, Inc. Olaris is a private company developing "Biomarkers of Response" (BoR) to optimize treatment decisions. I receive financial support and equity from the company.

22%

Despite access to therapies, less than 22% of metastatic breast cancer (mBC)
patients survive 5+ years

WHY?

RESISTANCE Leads to Poor Outcomes

ER+ metastatic BC patients are prescribed CDK4/6 inhibitors

20% of patients are intrinsically resistant

All patients acquire resistance

- Poor outcomes
- Increased adverse effects
- Increased healthcare costs

Each patient is screened prior to treatment

"resistant"
patients receive
alternative
treatment

SCREEN BEFORE TREATMENT

"responders" receive CDK4/6 inhibitor

"resistant"
patients receive
alternative
treatment

MONITOR ON TREATMENT

"responders" receive CDK4/6 inhibitor

- Improved outcomes
- Reduced adverse effects
- Reduced healthcare costs

Why Metabolites?

Biomarkers:

DNA/RNA:

what **could** happen

Protein:

what **makes it** happen

Metabolites:

what <u>is</u> happening

Factors Beyond Genetics Influence Drug Response

Metabolomics provides a fingerprint of disease

Not Your Grandfather's Metabolomics

Pioneering methods using NMR and MS increase metabolome coverage in a highly reproducible manner. Proprietary BoR algorithm combines top features from multiple ML algorithms to create more accurate classifications

Evaluation of Non-Uniform Sampling 2D ¹H-¹³C HSQC Spectra for Semi-Quantitative Metabolomics

Bo Zhang 1, Robert Powers 2,300 and Elizabeth M. O'Day 1,*

- Olaris, Inc., Waltham, MA 02451, USA; bzhang@olarisbor.com
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; rpowers3@unl.edu
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Correspondence: eoday@olarisbor.com

Received: 20 March 2020; Accepted: 12 May 2020; Published: 16 May 2020

Abstract: Metabolomics is the comprehensive study of metabolism, the biochemical processes that sustain life. By comparing metabolites between healthy and disease states, new insights into disease mechanisms can be uncovered. NMR is a powerful analytical method to detect and quantify metabolites. Standard one-dimensional (1D) 1H-NMR metabolite profiling is informative but challenged by significant chemical shift overlap. Multi-dimensional NMR can increase resolution, but the required long acquisition times lead to limited throughput. Non-uniform sampling (NUS) is a well-accepted mode of acquiring multi-dimensional NMR data, enabling either reduced acquisition times or increased sensitivity in equivalent time. Despite these advantages, the technique is not widely applied to metabolomics. In this study, we evaluated the utility of NUS 1H-13C heteronuclear single quantum coherence (HSQC) for semi-quantitative metabolomics. We demonstrated that NUS improved sensitivity compared to uniform sampling (US). We verified that the NUS measurement maintains linearity, making it possible to detect metabolite changes across samples and studies. Furthermore, we calculated the lower limit of detection and quantification (LOD/LOQ) of common metabolites. Finally, we demonstrate that the measurements are repeatable on the same system and across different systems. In conclusion, our results detail the analytical capability of NUS and, in doing so, empower the future use of NUS 1H-13C HSQC in metabolomic studies.

Case Study: CDK4/6 BoR

CDK4/6 Inhibitors Block Cell Cycle Progression

Inhibiting the cell cycle is a long-standing strategy for cancer therapy

New "selective" CDK4/6 Inhibitors Block Cell Cycle Progression

Structure	Drug	CDK IC50				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ibrance (palbociclib) Pfizer	CDK1: >10µM CDK2: >10µM CDK4: 9-11nM CDK6: 15nM				
	Kisqali (ribociclib) Novartis	CDK1: >100µM CDK2: >50µM CDK4: 10nM CDK6: 39nM				
HN N N	Verzenio (abemaciclib) Eli Lilly	CDK1: >1µM CDK2: >500nM CDK4: 2nM CDK6: 5nM				

Critical Need to Identify CDK4/6 NR

O'Day, E.M., et al (2019) ASCO Poster

- 87% of Responders [patients who saw tumors decrease within first 6 months of treatment] are alive + 2 years
- 90% of Non-Responders [patients who saw tumors increase within first 6 months of treatment] are deceased within 12-15 months

Current CDK4/6i Biomarkers Fail to Predict R vs NR

Garrido-Castro, A., et al (2017) Curr Breast Cancer Rep. 9 (1) 26-33.

Proposed Biomarker	Observations					
ER+ positivity	In phase 1 study, abemaciclib monotherapy (N=47), only 11 of 36 ER+ patients experienced clinical benefit. In PALOMA-2 and PALOMA-3 trials, benefit from palbociclib did not differ by ER IHC expression					
Luminal gene expression, Rb status, Cyclin E/ CDK2 amplification	Most breast cancer cell lines with luminal gene expression are sensitive to palbociclib (some are ER-). Cell lines with low Rb levels are less sensitive to CDK4/6 inhibitors. CDK2 can substitute for CDK4/6. Cyclin E and CDK2 can phosphorylate Rb to escape block. Each marker needs to tested in clinic and can be difficult to measure and set "cut-offs".					
Cyclin D1 amplification and/or loss of p16	In PALOMA-1 (N=165) and separate phase II (N=37) neither cyclin D1 nor p16 were predictive of benefit or PFS with palbociclib					

Metabolites Are The End Product of Genomic Mutations

Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity

Rebecca A. Kohnz, Lindsay S. Roberts, David DeTomaso, Lara Bideyan, Peter Yan, Sourav Bandyopadhyay, Andrei Goga, Nir Yosef, and Daniel K. Nomura Andrei Goga, In Vir Yosef, and Daniel K. Nomura

Metabolites Are Influenced by the environment

Metabolic Insights Can Uncover Disease Mechanisms

Learning From Current Patients To Help Future Patients

- Receive baseline (BL) and 2 months post treatment (2M) plasma sample
- Isolate metabolites
- Detect and quantify Jane's & Jill's metabolites using NMR & MS
- Correlate differential metabolites with clinical outcomes
 - Jane on AI + CDK 4/6 inhibitor Jane's tumor shrinks (R) N = 15

Jill on AI + CDK 4/6 inhibitor Jill's tumor did not shrink (NR) N=9

Metabolic Profile of a Responder

Analyzing Metabolite Biomarkers

Identify differential grids for R vs. NR

146 R vs NR (p <0.05) 14 expected by chance

"Learning" from Machine Learning -> Clear Box ML

Perform predictive modeling

Identify most significant features

CDK4/6 BoR Differentiates R vs. NR

O'Day, E.M., et al (2019) ASCO Poster

CDK4/6 BoR differentiates R vs. NR with 95.2% predictive accuracy

We need to collaborate & conduct multi-site studies to uncover meaningful biomarkers

We are working with world-leading breast oncologists across the globe to validate & test CDK4/6 BoR

Why study metabolism?

Metabolism dictates phenotype

Diseased cell from patient X

DNA/RNA: what could happen

Protein: what makes it happen

Metabolites: what is actually

happening

Altered metabolism is linked to many common diseases

- Metabolites provide <u>diagnostics</u>
- Metabolic enzymes provide therapeutic <u>targets</u>

Future Of Medicines

BoR on every drug product

Acknowledgements

Bo Zhang, PhD Chandra Honrao, PhD Chen Dong Srihari Rao

Dejan Juric, MD (MGH) Christopher Pinto (MGH)

Sarah-Jane Dawson, MD, PhD (PeterMac)

Massimo Cristofanilli, MD (NW) Qiang Zhang, MD, PhD (NW) Lorenzo Gerratana, MD (NW)

Cynthia Ma MD, PhD (Washington University in St Louis)

Matt Goetz, MD (Mayo)
Ciara O'Sullivan, MB BCh/BAO (Mayo)

Yap Yoon Sim, MD (National Cancer Center Singapore)

HUMAN METABOLIC PATHWAYS

Metabolites Are Powerful Biomarkers

Let's avoid another vitamin C missed opportunity

Metabolites Are Powerful Biomarkers

Cell

Metabolic Dynamics and Prediction of Gesta Age and Time to Delivery in Pregnant Wome

Graphical Abstract

Authors

Liang Liang, Marie-Louise Hee Rasmu Brian Piening, ..., Hanyah Michael Snyder, Mads M

Correspondence

mpsnyder@stanford.edu mmelbye@stanford.edu

In Brief

Identification of blood m pregnant women that ca predict gestational age a insights into pregnancy v undetected by ultrasoun

Cell

Molecular Choreography of Acute Exercise

Graphical Abstract

Authors

Kévin Contrepois, Si Kegan J. Moneghetti Francois Haddad, M

Correspondence

fhaddad@stanford.e mpsnyder@stanford.

In Brief

Longitudinal multi-or characterize the mol associated with acut

BoR Report: Reliable Data For Clinicians

Example Patient Report

Olaris Therapeutics, Inc. 127 Western Ave, Allston, MA 02134 USA USA/CANADA: +1.866.OLARIS1 International: www.olaristherapeutics.com/contact

www.olaristherapeutics.com CLIA Number ########

ER+/HER2- Metastatic Breast Cancer BoR Report

Patient/ID: Patient, 1603 Gender: Female

Date of Birth: 1/1/1956

Diagnosis: metastatic ER+/Her2- BC

Report #:

Ordering Physician: Dr. First Last Name Pathologist: Dr. First Last Name

Specimen Type: Plasma

Olaris BoR Score uses a metabolite-profiling platform to determine the expression of a panel of metabolites and calculates a score ranging from 0-100.

The findings are applicable to women who have ER+/HER2- metastatic breast cancer.

Clinical Experience: The likelihood of response shown below are from a retrospective study that included 21 ER+/HER2- metastatic breast cancer patients who were treated with CDK4/6 inhibitors, Ibrance (palbociclib) or Kisqali (ribociclib).

Your baseline (BL) BoR Score compared to other patient Responders (R) and Non-Responders (NR)

If Olaris BoR Score is:

- Greater than 0 → R
- Less than 0 → NR

Olaris Therapeutics, Inc. 127 Western Ave, Allston, MA 02134 USA USA/CANADA: +1.866.OLARIS1 International: www.olaristherapeutics.com/contact www.olaristherapeutics.com

CLIA Number #########

BL CDK4/6 class **BoR Score:** +7

BL Ibrance **BoR Score:** +4

BL Kisqali BoR Score: -1

BL PI3K BoR Score:

BL mTOR BoR Score:

Biomarkers Accelerate Drug Development

Biomarkers												
	Phase 1 to Phase 2			Phase 2 to Phase 3			Phase 3 to approval			Overall		
Therapeutic group		Total phase transitions	POS _{1,2} , %	(SE, %)	Total phase transitions	POS _{2,3} , %	SE, %	Total phase transitions	POS _{3,APP} , %	(SE, %)	POS, %	(SE, %)
Oncology	No biomarker	9349	28.0	(0.5)	4773	17.4	(0.5)	1159	33.0	(1.4)	1.0	(0.2)
	With biomarker	1136	43.5	(1.5)	742	38.8	(1.8)	77	63.6	(5.5)	10.7	(1.9)
	All	10 485	29.7	(0.4)	5515	20.3	(0.5)	1236	35.5	(1.4)	2.1	(0.2)
Metabolic/	No biomarker	1532	44.5	(1.3)	1438	33.9	(1.2)	1086	52.0	(1.5)	7.9	(0.8)
endocrinology	With biomarker	7	57.1	(18.7)	2	50.0	(35.4)	15	20.0	(10.3)	5.7	(13.9)
	All	1539	44.6	(1.3)	1440	34.0	(1.2)	1101	51.6	(1.5)	7.8	(0.8)
Cardiovascular	No biomarker	1241	39.0	(1.4)	1027	37.9	(1.5)	962	62.2	(1.6)	9.3	(1.0)
	With biomarker	7	85.7	(13.2)	5	100.0	(0.0)	2	100.0	(0.0)	85.7	(13.2)
	All	1248	39.9	(1.4)	1032	38.2	(1.5)	964	62.2	(1.6)	9.5	(1.0)
CNS	No biomarker	2181	40.4	(1.1)	2050	30.2	(1.0)	1141	51.1	(1.5)	6.2	(0.6)
	With biomarker	42	54.8	(7.7)	42	28.6	(7.0)	15	53.3	(12.9)	8.3	(6.4)
	All	2223	40.7	(1.0)	2092	30.2	(1.0)	1156	51.1	(1.5)	6.3	(0.6)
Autoimmune/	No biomarker	2506	38.9	(1.0)	2106	25.4	(0.9)	964	63.7	(1.5)	6.3	(0.6)
inflammation	With biomarker	9	55.6	(16.6)	14	35.7	(12.8)	5	60.0	(21.9)	11.9	(16.8)
	All	2515	39.0	(1.0)	2120	25.5	(0.9)	969	63.7	(1.5)	6.3	(0.6)
Genitourinary	No biomarker	359	34.3	(2.5)	287	28.9	(2.7)	212	66.5	(3.2)	6.6	(1.5)
,	With biomarker	5	80.0	(17.9)	0	N.A.	N.A.	0	N.A.	N.A.	N.A.	N.A.
	All	364	34.9	(2.5)	287	28.9	(2.7)	212	66.5	(3.2)	6.7	(1.5)
Infectious disease	No biomarker	1961	39.7	(1.1)	1453	34.7	(1.2)	1069	75.1	(1.3)	10.4	(0.9)
miceuous disease	With biomarker	6	66.7	(19.2)	27	44.4	(9.6)	9	100.0	(0.0)	29.6	(16.8)
	All	1967	39.8	(1.1)	1480	34.9	(1.2)	1078	75.3	(1.3)	10.5	(0.9)
Ophthalmology	No biomarker	180	52.2	(3.7)	274	34.7	(2.9)	207	74.9	(3.0)	13.6	(2.8)
	With biomarker	1	0.0	(0.0)	3	33.3	(27.2)	0	N.A.	N.A.	N.A.	N.A.
	All	181	51.9	(3.7)	277	34.7	(2.9)	207	74.9	(3.0)	13.5	(2.8)
Vaccines	No biomarker	733	40.8	(1.8)	761	32.9	(1.7)	609	85.4	(1.4)	11.4	(1.3)
(infectious disease)	With biomarker	0	N.A.	N.A.	5	0.0	(0.0)	0	N.A.	N.A.	N.A.	N.A.
(iniconous disease)	All	733	40.8	(1.8)	766	32.6	(1.7)	609	85.4	(1.4)	11.4	(1.3)
Overall	No biomarker	20 042	34.7	(0.3)	14 169	20.8	(0.4)	7409	59.0	(0.6)	3.3	(0.2)
Overall	With biomarker	1213	44.5	(0.3) (1.4)	840	38.6	(0.4) (1.7)	123	60.2	(4.4)	10.3	(0.2) (1.6)
	All	21 255	35.2	. ,	15 009	27.4	(0.4)	7532	59.0	(0.6)	5.7	(0.2)
	AII	21 233	33.2	(0.3)	13 009	27.4	(0.4)	1332	39.0	(0.0)	3.1	(0.2)

Wong, C.H., et al (2019) Biostatistics

Biomarkers increase the Probability of Success (PoS) At Every Stage of Clinical Development

