

Cancer & Evolution Symposium

RNA Whole-Transcriptome Sequencing in Cancer Diagnostics

Bonnie Anderson

Co-founder, Chairman and Chief Executive Officer

October 16, 2020

... patients like Ashley

Five clinical indications

Addressing unmet needs throughout the care continuum

^{*} Investigational product

® Veracyte, Inc. All rights reserved.

RNA = "The Living Genome"

Compare RNA-seq and DNA Whole Exome Seq (WES) in 17 lung cancer tissues

- Identify variants that are expressed or silent.
- Also find allelic imbalance alleles that are biased towards the variant or wild type allele
- Somatic drivers like KRAS are found to be variant biased
- Overall mutation rate of highly expressed genes is lower than non expressed genes (4 vs 14 mutations per Mbp),
 suggesting Transcription-coupled repair mechanism or other selection pressures

The "Unified Assay" RNA sequencing platform allows us to measure a rich source of transcript diversity

- Uses 425,437 enrichment probes to enable sequencing of 214,126 exons in 21,415 human genes
- The assay covers 98.3% of the RNA Exome

AND

Constitutive Splicing

Exon Skipping

Intron Retention

Mutually Exclusive Exons

Alternative 5' Splice Site

ONE ASSAY...ALL TRANSCRIPTS

ONE GENE...MANY ISOFORMS

The power of RNA sequencing was needed in Afirma GSC

protein-codingnon-coding

GENE EXPRESSION

SEQUENCE VARIANTS

AUUCGA UACAGU CGUAAC

FUSIONS

MITOCHONDRIAL GENOME

LOSS OF HETEROZYGOSITY

NormalOne copy from each parental chromosome

Loss-Of-Heterozygosity (LOH)
One copy from each parental

chromosome

Improving patient outcomes from biological complexity

¹ Company estimates

Algorithmic approach needs to fit the problem

Strong, unique signature

Diverse and complex signature

Afirma GSC utilizes >10,000 genes among multiple classifiers

PARATHYROID mRNA expression

мтс

mRNA expression

BRAF

mRNA expression + Variants

RET/PTC FUSION

Fusion Transcripts

Initial Classifiers

identify rare neoplasms and lesions with >95% risk of malignancy for more informed treatment decisions

FOLLICULAR CONTENT INDEX

mRNA expression

ENSEMBLE MODEL

mRNA expression

HÜRTHLE CELL INDEX

mRNA expression + Mitochondrial Transcripts

HÜRTHLE NEOPLASM INDEX

mRNA expression + Chromosomal Level Loss of Heterozygosity

Patel KN, et al. JAMA Surg, 2018

Follicular Content Index

identifies samples with sufficient follicular content

Ensemble Classifier

leverages multiple algorithms to derive the final benign or suspicious result

Hürthle Classifiers

enable correct classification of significantly more Hürthle cell lesions as benian

Afirma GSC was validated on 191 of the 210 samples with remaining RNA from Alexander EK, et al. *NEJM* 2012

Four key elements should be considered in clinical validation studies:

BLINDED

MULTICENTER

REPRESENTATIVE

9

Hao Y, et al. BMC Systems Biology. 2019

Clinical evidence is essential for adoption and reimbursement

THE LANCET Respiratory Medicine

Use of a molecular classifier to identify usual interstitial pneumonia in conventional transbronchial lung biopsy samples: a prospective validation study

Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules

Kepal N. Patel, MD¹; Trevor E. Angell, MD²; Joshua Babiarz, PhD³; Neil M. Barth, MD^{4,5}; Thomas Blevins, MD⁶; Quan-Yang Duh, MD⁷; Ronald A. Ghossein, MD⁸; R. Mack Harrell, MD 9.10.11; Jing Huang, PhD³; Giulia C. Kennedy, PhD³; Su Yeon Kim, PhD³; Richard T. Kloos, MD⁴; Virginia A. LiVolsi, MD¹²; Gregory W. Randolph, MD¹³; Peter M. Sadow, MD, PhD¹⁴; Michael H. Shanik, MD¹⁵; Julie A. Sosa, MD¹⁶; S. Thomas Traweek, MD¹⁷; P. Sean Walsh, MPH³; Duncan Whitney, PhD³; Michael W. Yeh, MD¹⁸; Paul W. Ladenson, MD¹⁹

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer

Gerard A. Silvestri, M.D., Anil Vachani, M.D., Duncan Whitney, Ph.D.,
Michael Elashoff, Ph.D., Kate Porta Smith, M.P.H., J. Scott Ferguson, M.D.,
Ed Parsons, Ph.D., Nandita Mitra, Ph.D., Jerome Brody, M.D., Marc E. Lenburg, Ph.D.,
and Avrum Spira, M.D., for the AEGIS Study Team*

® Veracyte, Inc. All rights reserved. October 16, 2020

FREE

Applying the model to Lung Cancer

Early detection of lung cancer improves survival

5-YEAR SURVIVAL RATE SIGNIFICANTLY HIGHER WHEN LUNG CANCER DETECTED AT A LOCAL STAGE

NATIONAL LUNG SCREENING TRIAL DEMONSTRATED 20% MORTALITY REDUCTION WITH CT SCREENING²

ESTABLISHED IN 1912

AUGUST 4, 2011

VOL. 165 NO. 5

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening

The National Lung Screening Trial Research Team*

2. Aberle et al. NEJM 2011

^{1.} American Cancer Society. Facts and Figures. 2017.

Noninvasive nasal swab test based on "Field of Injury" science

NASAL SWAB CLASSIFIER

New risk assessment & diagnostic approach to improve standard of care

Training/Independent test set demographic information Samples with RIN ≥ 3

Training: **411** patients

Sub-category Benign Malignant

Category	Sub-category	Benign	ivialignant
		85	326
Sex	Male	51	210
	Female	34	116
Age	Median	58	65
Smoking status	Current	25	146
	Former	60	180
Pack-year	Median	30	47
Nodule size	< 1	9	8
	1 to 2	16	52
	>2 to <3	9	45
	>=3	27	195
	III defined		
	infiltrate	20	14
	Unknown	4	12
Nodule location	Central	22	120
	Peripheral	33	90
	Both	26	105
	Unknown	4	11
Histology	SCLC		42
	NSCLC		250
	Other		34
NSCLC type	Adenocarcinoma		106
	Squamous		100
	Large Cell		11
	Other		33

Category

Independent Test Set: **261** patients

Category	Sub_category	Benign	Malignant	
		57	204	
Sex	Male	38	131	
	Female	19	73	
Age	Median	57	66	
Smoking status	Current	23	104	
	Former	34	100	
Pack-year	Median	20	48	
Nodule size	< 1	7	6	
	1 to 2	17	33	
	>2 to <3	6	25	
	>=3	14	125	
	III defined			
	infiltrate	10	10	
	Unknown	3	5	
Nodule location	Central	24	72	
	Peripheral	21	61	
	Both	8	65	
	Unknown	4	6	
Histology	SCLC		26	
	NSCLC		161	
	Other		17	
NSCLC type	Adenocarcinoma		69	
	Squamous		62	15
	Large Cell		10	
	Other		20	

Subsequent Independent Test Set Performance using Classifier with two cut-offs:

Sensitivity > 96% for Classification as Low Risk

Incoming Suspiciou	s Nodules	Sensitivity	Specificity
All (N=26	1)	96.6% [93.1 – 98.6]	45.6% [32.4 – 59.3]

Specificity > 94% for Classification as High Risk

Incoming Suspicious Nodules	Sensitivity	Specificity
All (N=261)	50.0% [42.9– 57.1]	94.7% [85.4 – 98.9]

Test performance is optimized for desired outcome to avoid:

Test with HIGH SPECIFICITY (98%)
But LOW SENSITIVITY (50%)

30% Cancer prevalence Post CT today

Positive results – 50% of cancers - 2% FP
Negative results – 50% FN

No Workup

Test with HIGH SENSITIVITY (98%)
But LOW SPECIFICITY (50%)

Positive results – 50% FP
Negative results – 2% FN

No Workup
No Workup

NASAL SWAB CLASSIFIER

New risk assessment & diagnostic approach to improve standard of care

750,000 patients with suspicious nodules* are sent to Pulmonologist for workup (~25% risk of cancer)

Preliminary Results (CHEST 2019)

High Risk – ~50% of cancers classified with > 94% specificity4 (~100,000 pts)

Send patient directly to Surgery and/or Treatment

Intermediate Risk Reduced by 50%⁴

(~25-30% risk of malignancy)

Conduct Bronchoscopy (~60% inconclusive)

* Suspicious nodules include LungRADS3,

4 nodules and Intermediate/High risk nodules

Percepto

¹ Cancer Epidemiol Biomarkers Prev. 2012 July; 21(7): 1049–1059. doi:10.1158/1055-9965.EPI-12-0343

² Richards TB, et al. Morbidity & Mortality Weekly Report. 2020: 69(8); 201-206.

³Gould et al., ATS Journal, 2015

⁴ Lamb C, et al. American College of Chest Physicians (CHEST) Annual Meeting, Oct. 2019.

