The Post-Modern Synthesis Movements in Organismal Evolution

James Shapiro (Chicago) and Denis Noble (Oxford) October 15 2020

Un- and Under-Acknowledged Pioneers

- Richard Goldschmidt (1878 -1958) Evo-Devo, Macroevolution ≠ Microevolution
- Barbara McClintock (1902-1991), Chromosome restructuring and mobile DNA "controlling elements"
- G. Ledyard Stebbins (1906-2000), "Cataclysmic Evolution" by hybrid speciation
- Conrad Waddington (1905-1975), Epigenetic control of genome function
- Roy J. Britten (1919 -2012), repetitive DNA
- Carl Woese (1928-2012), discovery of Archaea, a third realm of life
- Lynn Margulis (1938-2011), symbiogenetic Origin of Eukaryotic Cells 1970
- Stephen Jay Gould (1941-2002) Punctuated equilibrium All these have minimal or zero recognition in standard Evolutionary Biology textbooks Uniformly sidelined for working outside The Modern Synthesis

Active vs Passive Views of Evolution

- Passive nature of Modern Synthesis (random mutations + Natural Selection ==> nothing for organism to do but reproduce differentially)
- What does "Active Evolution" mean?
 - Infectious heredity
 - Horizontal DNA transfer
 - Symbiogenesis and "Holobiont" symbioses
 - Natural Genetic Engineering (mutagenic repair, mutator polymerases & deaminases, mobile DNA elements)
 - Evolutionary and epigenetic responses to ecological changes
 - Speciation by inter-specific hybridization

Active organismal modification of selective environment (Niche Construction)

Macroevolution is not the same as Microevolution

• Microevolution = accumulation of independent localized mutations optimizing individual adaptations, as Darwin described in 1859.

 Macroevolution = major chromosome restructuring generating new species and new taxa

 Goldschmidt, R. (1940). <u>The Material Basis of Evolution (The Silliman</u> <u>Memorial Lectures Series)</u>, Reissued 1982. New Haven CT, Yale Univ.Press

• White, M. J. D. (1945). <u>Animal cytology and evolution</u>, Cambridge University Press. (3rd Edition, 1973)

 Heng, H. H. (2019). <u>Genome Chaos: Rethinking Genetics, Evolution</u>, and Molecular Medicine, Academic Press.

Not All Hereditary Variation is Vertically Transmitted or Limited to the Germline

- Transmissible plasmids and bacterial antibiotic resistance (our largest evolutionary experiment)
- Lysogenic conversion of bacterial pathogens
- Cross-Taxon transfer by naked DNA, viruses and "gene transfer agents" (GTAs), microbial infections and parasitism
- The giant virus-amoeba "evolutionary melting pot"
- Soma-germline transmission by extracellular vesicles ("exosomes")

THE END OF "SELFISH" OR "JUNK" DNA

- Repetitive DNA is abundant in genomes of complex organisms and tracks complexity better than coding DNA
- Repetitive DNA can format genomic networks
- Repetitive DNA is actively transcribed
- Repetitive DNA is key to transcriptional networks, such as viviparous reproduction in mammals
- Non-coding RNAs are functional and key to splicing, epigenetic regulation (siRNAs) and determination of major phenotypes, such as pluripotency (lncRNAs)

THE THIRD WAY OF EVOLUTION

- Formed 2013 by James Shapiro, Denis Noble and Raju Pookottil.
- Aim: to create a space in which dissenters from the Modern Synthesis can work and develop insights.
- The THIRDWAY rejects Creationism as unscientific and the Modern Synthesis as too restrictive and unable to incorporate discoveries in genomics.
- Independent of any particular "synthesis"
- It seeks to validate and open new research lines in evolutionary biology
- <u>https://www.thethirdwayofevolution.com/</u>

Website statement

IN THETHIRD WAY

evolution in the era of genomics and epigenomics

Rationale	People	Books	Related reading	Contact	

The vast majority of people believe that there are only two alternative ways to explain the origins of biological diversity. One way is Creationism that depends upon intervention by a divine Creator. That is clearly unscientific because it brings an arbitrary supernatural force into the evolution process. The commonly accepted alternative is Neo-Darwinism, which is clearly naturalistic science but ignores much contemporary molecular evidence and invokes a set of unsupported assumptions about the accidental nature of hereditary variation. Neo-Darwinism ignores important rapid evolutionary processes such as symbiogenesis, horizontal DNA transfer, action of mobile DNA and epigenetic modifications. Moreover, some Neo-Darwinists have elevated Natural Selection into a unique creative force that solves all the difficult evolutionary problems without a real empirical basis. Many scientists today see the need for a deeper and more complete exploration of all aspects of the evolutionary process.

DEVELOPMENTS OUTSIDE MODERN SYNTHESIS 1

÷	Dates	People	Discovery/Field/topic
	1910	Mereschkowsky	Macroevolution by symbiogenesis
	1924	Kozo-Polyansky	
	1971 Lynn Margulis		
	1940	Goldschmidt	Distinction between Darwinian
	2019	Heng	microevolution and non-Darwinian
			macroevolution
	1950-1953	Barbara McClintock	Transposable elements
	1952-1953	Conrad Waddington	Transgenerational inheritance of acquired
			traits
	1952-3	Lederberg et al	Infective heredity and horizontal DNA
			transfer in bacteria
	1953	Weigle	Cell-induced mutability
	1966	Witkin	Mutator polymerases
	1998	Goodman	Error-prone DNA repair
ľ	1964, 1970	Temin	Reverse transcription of RNA into cDNA
ſ	1968	Britten	Repetitive DNA content of complex genomes
	1971	Britten & Davidson	Concept of repetitive DNA elements
			providing regulatory signals
	1972	Pigott & Carr	Chloroplasts originating from
	1975	Bonen & Doolittle	cyanobacterial endosymbionts
	1975 Zablen, Kissel et al		
ł	1977	Maxam & Gilbert	DNA sequencing
		Sanger, Air et al	

DEVELOPMENTS OUTSIDE MODERN SYNTHESIS 2

÷	Dates	People	Discovery/Field/topic
	1977	Bukhari	Broad taxonomic and mechanistic diversity of mobile genetic elements
	1977	Woese	Existence of second prokaryote kingdom
	1977	Woese & Fox	
	1983	Harding, <u>Heuser</u> et al	Extracellular vesicle and sperm-mediated
	1983	Pan & Johnstone	Soma- <u>Germline</u> DNA transfer
	1992	Ting, Rosenberg et al	Endogenous retroviruses as transcriptional
	1993	Boyd, Bax et al	signals and contributors to placental
	1995	<u>Venables</u> , Brookes et al	evolution
	1998	Fire, Xu, et al	Genome regulation by noncoding RNA
	2002	Kapranov, Cawley et al	
	2002	Okazaki, Furuno et al	
	2008	Diliger, Alliarai et al	
	1997	Torkelson, Harris et al	Ecological Activation of NGE activities and
	1998	Nevo	Hypermutable States
	1999	Lombardo, <u>Torkelson</u> et al	
	2001	Lander, Linton et al	Sequencing of the human genome
	2009	Mercer, Dinger et al	Recognition of regulatory properties of long non-coding RNAs
	2013	Guerrero, <u>Margulis</u> et al	Microbiomes and holobiont evolution by symbiont gain and loss

Statistics

- The group has so far identified at least 40 discoveries and publications that go beyond the framework of The Modern Synthesis
- A systematic search through 5 of the mostused textbooks and popular accounts shows exceedingly few acknowledgements of the discoveries and fields identified

Positive references to discoveries outside Modern Synthesis

Over 70 members interested in new approaches to evolution in all fields (95+ titles):

- Shapiro, J. A. (1983). Mobile Genetic Elements. New York, Academic Press.
- Keller, E. F. (1984). <u>A Feeling for the Organism, 10th Aniversary Edittion: The Life and Work of Barbara</u> <u>McClintock</u>. New York, Henry Holt
- Ho, M.-W. and P. Saunders (1984). <u>Beyond Neo-Darwinism</u>. New York, Academic Press.
- Karlin, S. and E. Nevo, Eds. (1986). Evolutionary Processes and Theory, Academic Press.
- Sapp, J. (1987). <u>Beyond the Gene: Cytoplasmic Inheritance and the Struggle for Authority in Genetics</u>, Oxford University Press
- Root-Bernstein, R. (1989). <u>Discovering. Finding and Solving Problems at the Frontiers of Science</u>, Harvard University Press.
- Dupré, J. (1993). <u>The Disorder of Things: Metaphysical Foundations of the Disunity of Science Cambridge</u>, MA, Harvard.
- Root-Bernstein, R. (1993). <u>Rethinking AIDS: The Tragic Cost of Premature Consensus</u>, Free Press.
- Sapp, J. (1994). Evolution by Association: A History of Symbiosis. United Kingdom, Oxford University Press.
- de Loof, A. (1996). <u>WAT IS LEVEN ? de onstoffelijke dimensie (What is Life? The immaterial dimension)</u>. Leuven Apeldoorn, Garant.
- Ho, M.-W. (1998; 3rd edition 2008). <u>The Rainbow and the Worm: The Physics of Organisms</u>, World Scientific Publishing Company.
- Ho, M.-W. (1998). <u>Genetic Engineering-Dream or Nightmare?: The Brave New World of Bad Science and</u> <u>Big Business</u>, Gateway Books.

- Van de Vijver, G., S. N. Salthe, et al. (1998). <u>Evolutionary Systems: Biological and</u> <u>Epistemological Perspectives on Selection and Self-Organization</u>, Springer.
- Villarreal, L. P., R. F. Conner, et al. (1998). AIDS: Science and Society, Jones & Bartlett.
- Nevo, E. (1999). <u>Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global</u> <u>Convergence</u>, Oxford University Press
- Root-Bernstein, R. (1999). <u>Sparks of Genius: The Thirteen Thinking Tools of the World's Most</u> <u>Creative People</u>, Houghton Mifflin
- Harold, F. M. (2001). <u>The Way of the Cell: Molecules, Organisms, and the Order of Life</u>, Oxford University Press. .
- Ryan, F. (2002). <u>Darwin's Blind Spot: Evolution Beyond Natural Selection</u>, Houghton Mifflin Harcourt.
- Caporale, L. H. (2002). <u>Darwin in the Genome : Molecular Strategies in Biological Evolution</u>, McGraw-Hill Education.
- Lewkowicz, D. J. and R. Lickliter (2002). <u>Conceptions of Development: Lessons from the</u> <u>Laboratory</u>, Psychology Press.
- Keller, E. F. (2002). The Century of the Gene, Harvard University Press
- Muller, G. and S. Newman (2003). <u>Origination of Organismal Form: Beyond the Gene in</u> <u>Developmental and Evolutionary Biology</u>. Cambridge USA, MIT Press.
- Odling-Smee, F. J., K. N. Laland, et al. (2003). <u>Niche Construction : The Neglected Process in</u> <u>Evolution</u>, Princeton University Press.
- Sapp, J. (2003). <u>Genesis: The Evolution of Biology</u>, Oxford University Press

- Weiss, K. M. and A. V. Buchanan (2003). <u>Genetics and the Logic of Evolution</u>, John Wiley & Sons.
- Ho, M.-W. (2003). <u>Living with the Fluid Genome</u>, Institute of Science in Society. Jablonka, E., Lamb, M (2005 (2nd revised edition 2014)). <u>Evolution in Four Dimensions</u>. Boston, MIT Press.
- Villarreal, L. P. (2005). <u>Viruses And The Evolution Of Life</u>. Washington DC, ASM Press.
- Sapp, J., Ed. (2005). <u>Microbial Phylogeny and Evolution: Concepts and Controversies</u>. United Kingdom, Oxford University Press.
- Wheeler, W. (2006). <u>The Whole Creature: Complexity, Biosemiotics and the Evolution of Culture</u>, Lawrence & Wishart.
- Caporale, L. H. (2006). <u>The Implicit Genome</u>. Oxford, UK, Oxford University Press.
- Ho, M.-W. and L. L. Ching (2007). <u>GMO Free: Exposing the Hazards of Biotechnology to Ensure the</u> <u>Integrity of Our Food Supply</u>, Square One.
- Bauer, J. (2008 (English 2012)). <u>Das kooperative Gen. Abschied vom Darwinismus. (The Cooperative Gene: Evolution as a creative process)</u>, Hoffmann und Campe.
- Roossinck, M. J. (2008). <u>Plant Virus Evolution</u>, Springer.
- Weiss, K. M. (2008). <u>Genetic Variation & Human Disease: Principles and Evolutionary Approaches</u>, Cambridge University Press.
- Noble, D. (2008). The Music of Life: Biology Beyond Genes, Oxford University Press.
- Logan, R. K. (2008). <u>The Extended Mind: The Emergence of Language, the Human Mind, and</u> <u>Culture</u>. Toronto, ON, University of Toronto Press, Scholarly Publishing Division.
- Holdrege, C. and S. Talbott (2008). <u>Beyond Biotechnology: The Barren Promise of Genetic</u> <u>Engineering (Clark Lectures)</u>, Publisher: University Press of Kentucky.

- Villarreal, L. P. (2008). Origin of Group Identity: Viruses, Addiction and Cooperation, Springer.
- Baluska, F. (2009). <u>Plant-Environment Interactions: From Sensory Plant Biology to Active</u> <u>Plant Behavior (Signaling and Communication in Plants)</u>, Springer.
- Hoffmeyer, J. and D. Favareau, Eds. (2009). <u>Biosemiotics An Examination into the Signs of Life</u> and the Life of Signsl, Univ of Scranton Press.
- Witzany, G. (2009). <u>Natural Genetic Engineering and Natural Genome Editing</u>, Wiley-Blackwell.
- Witzany, G. (2009). <u>Biocommunication and Natural Genome Editing</u>, Springer.
- Sandín Domínguez, M. (2009). <u>Pensando la evolución : pensando la vida (Thinkiing about Evolution: Thinking about Life)</u>, Cauac Editorial Nativa.
- Weiss, K. M. and A. V. Buchanan (2009). <u>The Mermaid's Tale: Four Billion Years of</u> <u>Cooperation in the Making of Living Things</u>, Harvard University Press
- Sapp, J. (2009). <u>The New Foundations of Evolution: On the Tree of Life</u>, Oxford University Press, USA.
- Austin, R. H. (2010). <u>The Physics of Proteins: An Introduction to Biological Physics and</u> <u>Molecular Biophysics</u>, Springer.
- Gontier, N., J. P. van Bendegem, et al., Eds. (2010). Evolutionary Epistemology, Language and Culture: A Non-Adaptationist, Systems Theoretical Approach. Springer.
- Caetano-Anolles, G. (2010). Evolutionary Genomics and Systems Biology, Wiley-Blackwell.
- Favareau, D., Ed. (2010). <u>Essential Readings in Biosemiotics : Anthology and Commentary</u>, Springer.

- Shapiro, J. A. (2011). Evolution: A View from the 21st Century. Upper Saddle River, NJ, FT Press Science.
- Koonin, E. V. (2011). <u>The Logic of Chance: The Nature and Origin of Biological Evolution</u>, FT Press.
- Kull, K. (2011). Towards a Semiotic Biology: Life is the Action of Signs, Imperial College Press.
- Lamm, E. (2011). Biological Computation, Taylor & Francis Group.
- Carey, N. (2011). <u>The Epigenetics Revolution: How Modern Biology is Rewriting our</u> <u>Understanding of Genetics, Disease and Inheritance</u>, Icon Books Ltd. Ryan, F. P. (2011). <u>The</u> <u>Mystery of Metamorphosis: A Scientific Detective Story</u>, Chelsea Green Publishing.
- Bejan, A. and J. P. Zane (2012). <u>Design in Nature: How the Constructal Law Governs Evolution</u> in Biology, Physics, Technology, and Social Organization Anchor.
- Witzany, G., Ed. (2012). Viruses: Essential Agents of Life, Springer.
- Witzany, G., Ed. (2012). <u>Biocommunication in Soil Microorganisms</u>, Springer.
- Witzany, G., Ed. (2012). Biocommunication of Fungi, Springer.
- Torday, J. S. and V. K. Rehan (2012). <u>Evolutionary Biology: Cell-Cell Communication, and</u> <u>Complex Disease</u>, Wiley-Blackwell.
- Spadafora, C. (2012). Sperm-Mediated Gene Transfer, Bentham.
- Ryan, F. P. (2013). <u>Virolution</u>: The Most Important Evolutionary Book Since Dawkins' Selfish Gene. London, Harper
- Pookottil, R. (2013). <u>BEEM: Biological Emergence-based Evolutionary Mechanism: How</u> <u>Species Direct Their Own Evolution</u>, Fossil Fish Publishing

- Van De Vijver, G. (2013). <u>Objectivity after Kant: Its Meaning, its Limitations, its Fateful</u> <u>Omissions</u>, Georg Olms Verlag.
- Westling, L. (2013). <u>The Logos of the Living World: Merleau-Ponty, Animals, and Language</u> (<u>Paperback</u>), Fordham University Press.
- Rosslembroich, B. (2014). On the Origin of Autonomy. A New Look at the Major Transitions in Evolution., Cham, Springer.
- Pina, M. and N. Gontier, Eds. (2014). <u>The Evolution of Social Communication in Primates: A</u> <u>Multidisciplinary Approach</u>. Interdisciplinary Evolution Research, Springer.
- Witzany, G., Ed. (2014). <u>Biocommunication of Plants</u>, Springer.
- Moelling, K. (2014). <u>Die Supermacht des Lebens. Reisen in die erstaunliche Welt der Viren</u> (<u>The Superpowers of Life. Journeys in the Astonishing World of Viruses</u>). Berlin, Germany, Frölich und Kaufmann.
- Harold, F. M. (2014). In Search of Cell History: The Evolution of Life's Building Blocks, University of Chicago Press.
- Vane-Wright, R. I. (2015). <u>Butterflies: A Complete Guide to Their Biology and Behaviour</u>. London, UK, Natural History Museum.
- Gontier, N., Ed. (2015). <u>Reticulate Evolution. Symbiogenesis, Lateral Gene Transfer,</u> <u>Hybridization and Infectious Heredity.</u>, Cham, Springer.
- Carey, N. (2015). Junk DNA: A Journey Through the Dark Matter of the Genome, Columbia University Press.

- Moore, D. S. (2015). <u>The Developing Genome: An Introduction to Behavioral Epigenetics</u>, Oxford University Press.
- Noble, D. (2016). <u>Dance to the Tune of Life: Biological Relativity</u>. Cambridge, UK, Cambridge University Press.
- Pross, A. (2016). What is Life?: How Chemistry Becomes Biology Oxford University Press,.
- Roossinck, M. J. (2016). <u>Virus: An Illustrated Guide to 101 Incredible Microbes</u>, Princeton University Press.
- Wheeler, W. (2016). Expecting the Earth: Life/Culture/Biosemiotics, Lawrence & Wishart.
- Sapp, J. (2016). <u>Coexistence: The Ecology and Evolution of Tropical Biodiversity</u>, Oxford University Press, USA
- Witzany, G. (2016). <u>Biocommunication of Animals</u>, Springer.
- Serrelli, E. and N. Gontier, Eds. (2016). <u>Macroevolution: Explanation, Interpretation and Evidence (Interdisciplinary Evolution Research)</u>, Springer.
- Corning, P. A. (2017). <u>Synergistic Selection: How Cooperation Has Shaped Evolution And The</u> <u>Rise Of Humankind.</u> World Scientific Publishing Company.
- Van De Vijver, G. (2017). <u>Evolutionary Systems: Biological and Epistemological Perspectives</u> on Selection and Self-Organization, Springer.
- Peterson, E. L. (2017). <u>The Life Organic: The Theoretical Biology Club And The Roots Of</u> <u>Epigenetics</u>, University of Pittsburgh Press.

- Torday, J. S. and V. K. Rehan (2017). Evolution, the Logic of Biology, John Wiley & Sons.
- Hadidi, A., R. Flores, et al., Eds. (2017). <u>Viroids and Satellites</u>, Academic Press.
- Witzany, G., Ed. (2017). <u>Biocommunication of Archaea.</u>, Cham, Springer.
- Walsh, D. M. (2018). <u>Organisms, Agency, and Evolution</u>. Cambridge, UK, Cambridge University Press.
- Gontier, N. (2018). On How Epistemology and Ontology Converge Through Evolution: The Applied Evolutionary Epistemological Approach. <u>The Map and the Territory. Foreword by Sir</u> <u>Roger Penrose</u>. Springer.
- Baluska, F., M. Gagliano, et al., Eds. (2018). <u>Memory and Learning in Plants</u>. Berlin, Springer.
- Ryan, F. P. (2019). <u>The Mysterious World of the Human Genome</u>. Amherst NY, Prometheus Books.
- Raza, A. (2019). <u>The First Cell: And the Human Costs of Pursuing Cancer to the Last</u>, Basic Books,.
- Lange, A. (2020). <u>Evolutionstheorie im Wandel. Ist Darwin überholt? (Evolution Theory</u> <u>Astray. Is Darwin Overthrown?)</u>, Spriinger Verlag.
- Jablonka, E., Lamb, M (2020). <u>Inheritance Systems and the Extended Synthesis (Elements in</u> <u>the Philosophy of Biology</u>). Cambridge UK, Cambridge University Press.
- Ryan, F. P. (2020). <u>Virusphere: From Common Colds to Ebola Epidemics--Why We Need the</u> <u>Viruses That Plague Us</u>, Prometheus Books.