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How does an individual tumor develop?
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Tumor development is a multi-step process in multiple distinct epithelial tissues.
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Can we understand the pathogenesis of a tumor in terms
of the somatic mutations that it accumulates in the genome
of its neoplastic cells? e.g., colorectal carcinomas

somatic mutations
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Colorectal carcinoma. (Vogelstein et al 1989)

How important are non-genetic programs in determining
the biology of cancer cells and thus tumors?
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Can we understand the pathogenesis of a tumor in terms
of the somatic mutations that it accumulates in the genome

of its neoplastic cells? e.g., pancreatic adenocarcinomas
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Experimental transformation of a human cell. (1999)
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This scheme allows us to understand,
at least in outline how a primary tumor
can be formed.
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Multiple subcircuits within a human cell must be perturbed
before (experimental) transformation of human cells succeeds.
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Why is human cell transformation so complicated?

~1011 cell divisions

~10° cell divisions? o
~1019 cell divisions ?

@<—we

1016 cell divisions

barland Science 2014)

bumble bee bat

If the risk of somatic mutations is proportional to the

the cumulative number of cell divisions in a lifespan

then the cells of larger, long-lived mammals must have

acquired proportionally increased numbers of anti-neoplastic defenses.



Can we understand the pathogenesis of a tumor in terms
of the somatic mutations that it accumulates in the genome
of its neoplastic cells?

» How important are non-genetic programs in determining
the biology of cancer cells and thus tumors?
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A major factor: The continuing influence
of the differentiation program of the cell-of-origin

Two genetically identical tumors from closely related cell types

SCLC = small cell lung cancer
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The continuing influence on transcriptome of the
differentiation program of the normal cell-of-origin
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The transcriptome of the normal cell-of-origin continues to imprint itself
on the behavior of derived neoplastic cells.
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continuing influence of the normal cell-of-origin
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How do cancer cells acquire all
of these distinct capabilities?
Are additional somatic
mutations required?
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How do cancer cells acquire all of these capabilities?

-~

- A key clue: The behavior of a
BPLER br. ca. xenograft in mouse host

Invasive cell

human vimentin-positive

(therefore mesench y mal ) cancer

cells of human origin)




Contextual signals influence the induction of EMT programs

- = epithelial-mesenchymal transition

I BPLER tx human mammary epithelial cells in mouse host

cytoker|atins (epithelial)

\ mouse stroma
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Border cells lose
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human|vimentin (mesenchymal)

transformed
human MECs
(BPLERSs)

Border cells gain
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K. Hartwell & T. Ince



How do carcinoma cells acquire traits needed to metastasize?: One possible solution:

The epithelial-mesenchymal transition (EIMT) is a complex,
multi-faceted program involving multiple coordinated changes in
cell-biological properties.
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There are many alternative EMT programs that share in
common a relatively small set of cell-biological changes.

The canonical
EMT program
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ically acting transcription factors (EM'T-TFSs)
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Shifting gears

Discovery of
tumor-initiating cells (TICs)
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Shifting gears: Is there any connection between the EMT & SC programs??

Immortalized human mammary epithelial cells
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Induction of EMT by Snail and Twist EMT-inducing TFs
generates CD44h CD24'° cells including CSCs
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Can expression of EMT-TFs in fully normal mammary epithelial cells
induce the formation of normal mammary stem cells?

Transient Expression (4-5 days) of two EMT-inducing transcription factors (Slug +
Sox9) prior to fat pad implantation induces a >100-fold excess of normal
mammary stem cells (visualized 6 weeks later)

10K control cells

|
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No EMT-TFs

Concomitant transiently induced expression of Slug + Sox9 EMT-TFs

Wenjun Guo
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What if we developed an anti-CSC treatment?

Ideally: | pefore treatment effects of treatment clini CaCIJreeS ponse:
cancer stem cells
Y -
O O O O O ®)
A OAO AO OAO OAO OAO
AN AN AN
OOO OOOOOO OOO OOOO OO
etc. etc. etc. etc. etc.

transit-amplifying cells transit- amP"fylﬂg cells



Reversibility of SC differentiatio
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What if we developed an anti-CSC treatment, e.g., cAMP induction?

Ideally: | pefore treatment effects of treatment clini Caclurrees ponse:
cancer stem cells
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What if this happens instead?
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Given all this, how does multi-step tumor progression actually proceed?

The Darwinian Model
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Intra-tumoral diversification:

The Darwinian Model: Mutations spawn diverse clonal
sub-populations more
rapidly than selection eliminates them
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However, the Darwinian model does not address
the complexity of multiple alternative phenotypic states
at each step of tumor progression.
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However, this scheme has its flaws:
Which cells are most likely to sustain the
mutations that lead to a more advantageous
phenotype?

1. The stem cells are relatively small in
number. Therefore small target size.

2. The stem cells generally proliferate far less
often than do the transit-amplifying/progenitor
cells. (Typically the vast bulk of the mitotic
activity in a tissue is presented in the transit-
amplifying/progenitor compartment. Therefore,
far less opportunity for somatic mutations being
sustained in the stem cell compartment.

Hence, it is far more likely that the transit-
amplifying compartment rather than the same
cell compartment is the source of the mutations
that generate novel variants.
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If the mutations are sustained in
the transit-amplifying
compartment, how are they
sustained and perpetuated in
the descendant population?
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STEM CELLS AMPLIFYING DIFFERENTIATED
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If the mutations are sustained in the
transit-amplifying compartment, how
are they sustained and perpetuated in
the descendant population?

And even if this is true, which cells are
the objects of selection?
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Tumor Size (Imm~2)

And then there is the question of intratumoral inter-clonal collaboration

Differential response of Epi. and Mes. tumors to checkpoint immunotherapy
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And then there is the question of intratumoral inter-clonal collaboration

Minority (10%) mesenchymal subpopulations can protect majority
epithelial populations from elimination by anti-CTLA4 therapy
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