Can the “Cancer Species” be driven to extinction?

William Audeh MD, MS
Medical Oncology
Cedars-Sinai Medical Center
UCLA Evolutionary Medicine Program
Chief Medical Officer, Agendia

william.audeh@agendia.com
william.audeh@cshs.org
williamaudehmd@gmail.com
Applying Evolutionary Biology to the problem of Cancer

- To explain why cancer develops
 - Intrinsic mutation rates and carcinogenesis
 - Mutation necessary for evolution but permits carcinogenesis
 - Maladaptation - Mismatch
 - Human genome maladapted to modern environment and lifestyle

- To guide therapy of cancer?
 - Apply *principles of evolutionary biology* to design and guide the therapeutic strategy?
Cancer genomics

New promise for defeating a digital disease
Lack of Progress in Adult Cancers with Chemotherapy

- DNA damage (mutation) must be tolerated by cancer cells for their survival
- Resistance to Chemotherapy eventually appears in nearly all cases of advanced cancer
- Chemotherapy selects for resistant cell population
The “New” Era of Cancer Therapy

- **Molecularly-Targeted Therapy**
 - Generally less toxic than DNA-damaging therapy
 - Therapies targeting
 - hormone-driven pathways - estrogen, androgen
 - growth-promoting pathways
 - cell survival pathways
 - Hundreds of new targets being discovered
 - Over a thousand new cancer drugs in development

- **Immunotherapy**
 - Enhancing immune response against cancer cells
 - Directing immune destruction of cancer cells
The “New” Era of Cancer Therapies
but still using
The “Old” Strategy for Cancer Therapy
“Resistance” to Targeted Therapy and Immunotherapy inevitably develops… as predicted by Evolutionary Biology

- Cancer is a diverse population of related cells
- Biological Populations evolve and adapt
- Adaptation to any single drug is highly likely
 - Crizotinib in lung cancer (77% respond, all progress)
- Selection pressure of therapy drives evolution…
- Adaptation facilitated by genetic diversity
- Genetic diversity = “tumor heterogeneity”
Tumor Heterogeneity: the finding that all cancer cells in the patient are not identical

= Chaos?
Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

Marco Gerlinger, M.D., Andrew J. Rowan, B.Sc., Stuart Horswell, M.Math., James Larkin, M.D., Ph.D.,
David Endesfelder, Dip.Math., Eva Gronroos, Ph.D., Pierre Martinez, Ph.D., Nicholas Matthews, B.Sc.,
Aengus Stewart, M.Sc., Patrick Tarpey, Ph.D., Ignacio Varela, Ph.D., Benjamin Phillimore, B.Sc., Sharmin Begum, M.Sc.,
Neil Q. McDonald, Ph.D., Adam Butler, B.Sc., David Jones, M.Sc., Keiran Raine, M.Sc., Calli Latimer, B.Sc.,
Claudio R. Santos, Ph.D., Mahrokh Nohadani, H.N.C., Aron C. Eklund, Ph.D., Bradley Spencer-Dene, Ph.D.,
Graham Clark, B.Sc., Lisa Pickering, M.D., Ph.D., Gordon Stamp, M.D., Martin Gore, M.D., Ph.D., Zoltan Szallasi, M.D.,
Julian Downward, Ph.D., P. Andrew Futreal, Ph.D., and Charles Swanton, M.D., Ph.D.

- cancer cell population diversity within a single patient
Whole Genome Analysis of one Cancer in one Patient.

Multiple mutations
In multiple anatomic sites

"Tumor Heterogeneity" Shakes Up Wall Street…..

THE WALL STREET JOURNAL
WSJ.com

HEALTH INDUSTRY | Updated March 7, 2012, 6:38 p.m. ET

'Personalized Medicine' Hits a Bump

By RON WINSLOW

A tumor's genetic makeup can vary significantly even within the same tumor sample, researchers said, a finding that poses new challenges to the personalized-medicine movement in cancer.

One big implication of the new research, being published Thursday in the New England Journal of Medicine, is that analyzing only a single sample of a patient's tumor—the current practice—may miss important genetic mutations that affect the course of the disease.

That, in turn, could hinder emerging efforts to match patients with drugs that target the mutations affecting their tumors, a basic strategy of personalized medicine.

The findings don't diminish enthusiasm for the idea that genetic knowledge about tumors can transform cancer care, the researchers said. But it could make personalized treatment more complex—and more costly.

"It's a sobering finding," said Andrew Futreal, a co-author of the study who until recently was director of cancer genetics and genomics at Wellcome Trust Sanger Institute in London.

In an editorial accompanying the study, Dan L. Longo, an editor at the journal, suggested the varied genetic makeup of tumors described in the study

Dashed Hopes for Personalized Medicine With Targeted Therapies?
Whole Genome Analysis of one Cancer in a one Patient.

CONVERGENT EVOLUTION

Applying Evolutionary Biology to Cancer: Concept of Cancer as an “invasive species”

- A diverse population of eukaryotic cells
- Asexually reproducing
- Derived from a complex, multicellular organism
- Access to full “toolbox” of the eukaryotic cell
 - embryonic development, growth, cell migration
- Genomically unstable with high mutation rate
- Extensive adaptive capacity
- Invading the host...
The “Lexicon” of Cancer Medicine: Clinicians need to “think” differently about Cancer

- **Words** lock-in concepts and modes of thinking
- **Imply** “operating characteristics” of the system
 - “Response” / “Resistance”
 - “Regression” / “Progression”
 - “Remission” / “Relapse”

- **Directs** clinical decision-making and trial design
The Evolutionary Biology of Cancer: A New Lexicon needed for clinicians...

- **cancer**----------------------a population of genetically-related cells; “species”
- **tumor heterogeneity**--------genetic diversity within the population of cells
- **genomic instability**-------mutational rate generating diversity and adaptability
- tumor microenvironment--------ecosystem in which the cell population lives
- **cancer therapy**----------------selective pressure on the population
- **immunotherapy of cancer**---------introducing “predator” into ecosystem
- **resistance**----------------adaptation to selective pressure(s)
- **cure**----------------extinction of the species

- **How are species driven to extinction?**
 - Reduced genetic diversity and population size – “bottleneck”
 - Selective pressures exceed capacity for adaptation in population
 - e.g. insufficient mutational diversity to adapt to multiple targeted therapies
Using *Evolutionary Medicine* to Develop a Strategy for Cancer Therapy

- Diminishing selection for resistant, aggressive biology
 - “Adaptive therapy”
 - Intermittent, dose-modified therapy – seek to maintain population in equilibrium
 - Slow attrition, rather than massive (but incomplete) cell death
 - Avoid exerting strong selection pressure for resistance
 - Cancer as a chronic disease co-existing with “host” - not curative

- **Driving a species to extinction?** (i.e. “cure”?)
 - Genomically characterize cancer cell population
 - Genomically characterize adaptive pathways
 - Strategically apply targeted therapies to direct and limit adaptation
 - Diminish genetic diversity with therapies – create bottleneck
 - Apply therapy to which “bottleneck” population cannot adapt
Implications for “Tumor Heterogeneity” from Evolutionary Biology

- Evolutionary contingency / constraint
 - Subsequent mutations contingent upon / constrained by prior mutations

- Branches: likely to have predictable, adaptive consequences
 - Not random or infinite, but providing *survival advantage*
 - The clinical “logic” of evolutionary biology
Evolutionary Trees Illustrating Intratumor Heterogeneity across Cancer Types
Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing

Marco Gerlinger1,12, Stuart Horswell2,12, James Larkin3,12, Andrew J Rowan1,12, Max P Salm2,12, Ignacio Varela4,

Trunk mutation: VHL
Trunk mutation: variable
Trunks and Branches of Common Malignancies
Evolutionary Strategic Therapy

- Predict adaptive responses to targeted therapy
 - Catalogue recurring mutations, convergent evolution
- Anticipate resistance pathways
 - Apply therapy while resistant population subclinical
- *Role of the Immune System as “Predator”?*
 - *Mechanisms of evolutionary escape from predation*
Immune Microenvironment: Adaptive Escape from Predation (high mutational load and neoantigen expression)

- Evolutionary Adaptation to Predation:
 - “Camouflage” through escape from recognition
 - Anti PD(L)1 Immunotherapy “removes” the camouflage

Nature Immunology 14, 1014–1022 (2013)
“Hyperprogression” after Immunotherapy

Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1

Stéphane Champiat¹,², Laurent Dericle³, Samy Ammari⁴, Christophe Massard¹, Antoine Hollebecque¹, Sophie Postel-Vinay¹,², Nathalie Chaput⁵,⁶,⁷,⁸, Alexander Eggermont⁹, Aurélien Marabelle¹,¹⁰, Jean-Charles Soria¹,², and Charles Ferté¹,¹¹,¹²

A CT evaluations

Before (-8 weeks) Baseline 1st Evaluation (+8 weeks)
Observed across multiple patient and tumor types

No consistent genomic or immune features
 - EGFR and MDM2 amplification (↑proliferation, ↓apoptosis)

No mention of Evolutionary Biology to explain
Displaying the Clinical Relevance of Evolutionary Biology for Cancer Management Strategy?

Life history trade-offs in cancer evolution

C. Athena Aktipis, Amy M. Boddy, Robert A. Gatenby, Joel S. Brown and Carlo C. Maley
Using Evolutionary Medicine to Develop an “Extinction” Strategy for Cancer Therapy

- Driving a species to extinction:
 - *Genomically characterize cancer cell population*
 - *Genomically characterize adaptive pathways*
 - Strategically apply targeted therapies to direct and limit adaptation
 - Diminish genetic diversity with therapies – create bottleneck
 - Apply therapy to which “bottleneck” population cannot adapt
 - Immunotherapy?
 - Specific targeting?
Clinicians need to think of Cancer as...
...an evolving population
...following principles of evolutionary biology
Driving Cancer to Extinction?

No force of nature, apart from an extraterrestrial asteroid, has been more efficient at driving species to extinction than *Homo sapiens*...

...surely, we can apply this unique skill to conquering cancer...
Can the “Cancer Species” be driven to extinction?

William Audeh MD, MS
Medical Oncology
Cedars-Sinai Medical Center
UCLA Evolutionary Medicine Program
Chief Medical Officer, Agendia

william.audeh@agendia.com
william.audeh@cshs.org
williamaudehmd@gmail.com