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What is cancer as
a biological phenomenon?

Why does it exist?

What is its place in the great story
of life on Earth?







Cancer across the tree of life

I cancer reported
- cancer-like phenomena reported

I no cancer-like phenomena reported

I complex multicellularity

I simple or aggregative multicellularity

D unicellular
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Vertebrata (i.e. vertebrates)
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Echinodermata (e.g. starfish)

Hemichordata (e.g. acorn worm)

Protostomia (e.g molluscs)

Cnidaria (e.g. hydra)

Placozoa (i.e Trichoplax)

Porifera (e.g. sponges)

Ctenophora (e.g. comb jellies)

Choanoflagellata (e.g. collared flagellates)

Ascomycota (e.g. sac fungi)

Basidiomycota (e.g. fruiting body fungi)

Amoebozoa (e.g. slime molds)

Embryophyta (e.g. plants)

Chlorophyta (e.g. Volvox)

Rhodophyta (e.g. red algae)

Stramenopila (e.g. brown algae)

Bacteria (e.g. Pseudomonas)
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Key fact: cancer pervades multicellular life

Cancer is not “life gone wrong” but a deep-rooted and
therefore ancient property of life itself. To understand
cancer we need to know Its place in the overaII story of life
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Origin of cancer:
tracing Its deep evolutionary roots

. § "Nothing in biology
i . _makes sense except in
W™ 7 | the light of evolution."
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Cancer Is the re-expression of an ancestral phenotype
(atavism)
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Basic hypothesis

In cancer, cells re-wire information flows to default back to
ancestral unicellular pathways and ancestral phenotypes




Theodor Boveri (1914)

“I regard it as beyond doubt that the tendency

to multiply indefinitely is a primaeval property
of cells.”

If regulatory mechanisms are disrupted:

“...this change may well be enough to induce
an altruistic cell to revert to its egoistical mode
and thus release its multiplication from
restraint.”
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Cancer is a breakdown of the ancient cooperative contract
between cells and organism




The five foundations of multicellularity
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Some predictions

* Gene ages will be a key factor in cancer incidence and
progression.

* Cancer should show a transcriptional shift toward
unicellularity.

* The cancer phenotype should be suppressed when a
tumor is placed in a physiologically normal multicellular
environment. The immediate microenvironment of a
malignant tumor is not actually physiologically normal.



Addressing Evolutionary Ages of Genes

|Genome Analysis

A phylostratigraphy approach to uncover the genomic
history of major adaptations in metazoan lineages

Tomislav Domazet-Loso', Josip Brajkovi¢' and Diethard Tautz?

' Division of Molecular Biology, Ruder Boskovié Institute, Bijeni¢ka cesta 54, P.P. 180, 10002 Zagreb, Croatia
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Macroevolutionary trends traditionally are studied by
fossil analysis, comparative morphology or evo-devo
approaches. With the availability of genome sequences
and associated data from an increasing diversity of taxa,
it is now possible to add an additional level of analysis:
genomic phylostratigraphy. As an example of this
approach, we use a phylogenetic framework and embryo
expression data from Drosophila to show that grouping
genes by their phylogenetic origin can uncover foot-
prints of important adaptive events in evolution.

Introduction
Comparison of metazoan genome sequences has shown
that a significant fraction of genes occurs only in defined

Corresponding author: Domazet-Loto, T. (tdomazet@irb hr).
Available online 29 October 2007.

www.sciencedirect.com

lineages [1-8]. This implies that these genes have arisen
during the evolution of the respective lineages, probably in
the context of lineage specific adaptations (see Glossary).
The origin of such new genes seems to occur in a punctu-
ated manner, that is, new genes initially evolve very
quickly until they become locked into a pathway [2-4]. If
these genes would then retain an association with a
particular pathway, one could infer their evolutionary
origin on the basis of the function of the genes in extant
organisms and of an assessment of their phylogenetic
emergence (see Introduction in Online Supplementary
Material). This is the principle of ‘phylostratigraphy’,
which we present here as a general approach to trace
evolutionary innovations using data from genome projects.

The best data for a pan-metazoan statistical evaluation
of gene evolution are currently available from Drosophila
and we have focused our analysis on this dataset. However,

[q¢]

Update
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‘ How old is that oncogene? ‘

Domazet-Loso and Tautz BMC Biology 2010, 8:66
http://www.biomedcentral.com/1741-7007/8/66
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Phylostratigraphic tracking of cancer genes
suggests a link to the emergence of multicellularity
In metazoa

Tomislav Domazet-Loso'2 and Diethard Tautz*!

Abstract

Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is,
functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a
model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by
the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of
multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have
been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of
interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes
should, therefore, also provide insights into the origin of multicellularity.




‘We find two strong peaks of the emergence of cancer related
protein domains, one at the time of the origin of

the first cell and the other around the time of the evolution of the
multicellular metazoan organisms.’

Domazet-Loso and Tautz BMC Biology 2010, 8:66
http://www.biomedcentral.com/1741-7007/8/66
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Altered interactions between unicellular and
multicellular genes drive hallmarks of transformation
in a diverse range of solid tumors
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Edited by Robert H. Austin, Princeton University, Princeton, NJ, and approved April 17, 2017 (received for review November 18, 2016)

Tumors of distinct tissues of origin and gen
common hallmark cellular phenotvpes. includ

Keywords: evolution; systems biology; networks; atavism; multicellularity; network medicine

How the evolution of multicellularity set the
stage for cancer

Anna S Trigos'?, Richard B Pearson®*“, Anthony T Papenfuss'?® and David L Goode™"2

1Computationaf Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; 2Sir Peter MacCallum
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Homo sapiens

o 16
Homininae
. 15
Catarrhini 14
Euarchontoglires 13
Eutheria 15
Theria
Mammalia 1
. 10
Ammiota
Euteleostomi 9
Chordata - 8
Bilateria
Eumetazoa 6
Metazoa 5
Opisthokonta 5 4
Eukaryota
) 2
Cellular organisms 1
Trigos et al. PNAS | June 13,2017 | vol. 114 | no.24 |
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Altogether 40% of human genes are assigned to unicellular ancestors (phylostratal-3),
and 60% were assigned to multicellular ancestors (phylostrata 4-16).



Ancestral gene requlatory networks drive cancer

Kimberly J. Bussey®®, Luis H. Cisneros®<, Charles H. Lineweaver, and Paul C. W. Davies®'

Cancer Normal
\ \ {
v ! :
. 2
Q
£
C O
° 8
{:6.5 Unicellular Multicellular
S 2 | . Genes
a S
Y
Qo
Origin of Life Present

Compared to normal, cancer increases the proportion of its
transcriptome coming from unicellular genes.



Trigos et al, PNAS 2017
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Less differentiated tissues have older
transcriptomes
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Further predictions

* Younger genes should be enriched in mutations in cancer

* Genes that are causally involved in cancer should be older
than the emergence of complex multicellularity 600
million years ago.

* Cancer should employ unicellular responses to cellular
and environmental stresses.
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Ancient genes establish stress-induced
mutation as a hallmark of cancer

Luis Cisneros'**, Kimberly J. Bussey'***, Adam J. Orr*, Milica Miogevi¢®, Charles
H. Lineweaver®, Paul Davies®
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» Genes causally implicated in cancer are under-represented among young (<500 MY)
genes.
« Dominant COMSIC genes are younger than recessive COSMIC genes
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Functional enrichment network of recessive COSMIC
cancer genes highlights DNA repair and cell cycle control.




DOES EVOLUTION
EVOLVE UNDER
PRESSURE?

Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a Stress Response and the Regulation
of Evolvability. Crit Rev Biochem Mol Biol. 2007;42: 399-435. pmid:17917874

M HINGRY, AND COL,

AND STRESSED, AND MUTATIONS
MIGHT  BE TIME T0 TURN ON TO SPEED (P EVOLUTION

EVERYTHING IS AWFLL. FLP YOUR SWITCH.




Stage 11 Sacrococcoygeal endodermal sinus tumor
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Karyotypic “state” as a potential determinant for
anticancer drug discovery

Anna V. Roschke**, Samir Lababidi**, Giovanni Tonon*!, Kristen 5. Gehlhaus*, Kimberly Bussey®, John N. Weinstein®,
and llan R. Kirsch*$

*Genetics Branch and *Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, MD 20892

Edited by Albert de la Chapelle, Ohio State University, Columbus, OH, and approved January 7, 2005 (received for review July 30, 2004)

vb FA a‘ u ﬁ ' . Cancer is a genetic disease caused by genomic instability. In many We looked for relations between these markers of chromo-
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Adapted from Figure 2, Bussey et al, Cancer Genet Cytogenet
25:134-46, 1999
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Regulation of the error-prone DNA polymerase Polk by
oncogenic signaling and its contribution to drug
resistance
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Science Signaling 28 Apr 2020:
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MTOR signaling orchestrates stress-induced
mutagenesis, facilitating adaptive evolution in cancer
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SItH (Stress Introduced Heterogeneity)
Score

The SItH Score is a
way of quantifying
how mutations are
distributed in a cluster
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Cox Proportional Hazard Regression
Grouping Observation

HR Cl p-value

Large SItH predicts

Primary Tumors 0.4184 0.1983 - 0.8829 0.0222 . . .
increased patient survival

Overall SItH
Recurrent and Large SItH predicts

Metastatic Tumors 7.987 1.241-51.41 0.0295 decreased patient survival

N/A 5.045 1.399 — 18.19 0.0134 Large 1QR predicts
decreased patient survival

Cluster SItH IQR
IQR above _or below 137 11011 - 1.705 0.00475 Cut-Off predlc.ts poor
median prognosis




Therapeutic Implications

* Single cells EVOLVE to survive. If cancer is single cell behavior, then
adaptability is a selectable trait.

*  “Take no prisoners” will apply a strong selective pressure that will select for
adaptability and thus resistance

* To take advantage of adaptability, we should think about what
multicellularity “buys” a cell and create therapies that select for those
behaviors rather than selecting against unicellular behavior

* Need a way to characterize tumors that takes into account both adaptive
potential of the tumor and the host’s available cancer defenses
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Clustering versus mutational load
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Selection increases structural but not
numerical abnormalities

Structural Rearrangement After Selection by Hypoxia Numerical Abnormalities After Selection by Hypoxia
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