Single cell-based Analysis of cancer and host proteome interactions by Deep Visual Proteomics

@labs_mann

<u>Matthias Mann</u>

Andreas Mund, Fabian Coscia, Andreas Brunner, Marvin Thielert, Florian Meyer

Max Planck Institute of Biochemistry, Martinsried, Germany

The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen

What proteomics can analyze

Minimalistic proteomics

The proteome landscape of the kingdoms of life

Advantages of single cell (type) proteomics

Trapped ion mobility spectrometry (TIMS)

Florian Meier

Andreas Brunner

Catherine Vasilopoulou

Johannes Müller

Meier, ..., Mann, *J. Prot. Res.* 2015 Meier, ..., Mann, *Mol. Cell. Prot.* 2018 Vasilopoulou, ..., Mann, Meier, *Nat. Comm.* 2020

Parallel Accumulation followed by SErial Fragmentation (PASEF)

PASEF: Multiplying Sequencing Speed and Sensitivity; Meier, ..., Mann; JPR; 2015 Online PASEF with a Novel TIMS; Meier, ..., Mann; MCP; 2018

Parallel Accumulation – Serial Fragmentation (PASEF)

Mass spectrometry-based proteomics to enable single-cell analysis

Andreas-David Brunner Marvin Thielert

A modified Trapped Ion Mobility Spectrometer coupled to a Time-of-Flight analyzer

Raw intensity increase

Single cell proteomics on FACS sorted cells

1% PSM and 1% Protein level FDR in MaxQuant

Quantitative reproducibility on protein level

Evosep nanoflow

In EvoTip single cell processing

Advantages

- One-pot reaction
- No transfer step
- Peptides directly immobilized
- Peptide elution in ~20 nl volume
- Peptides pushed by single pump

A novel LC system embeds analytes in pre-formed gradients for rapic, ultra-robust proteomics Bache, ..., Mann, 2018, MCP

Disclaimer: MM is an indirect investor in Evosep

diaPASEF for increased ion sampling

diaPASEF: Bottom-up proteomics with near optimal ion usage Florian Meier, Andreas Brunner, ..., Ruedi Abersold, Ben C. Collins, Hannes L. Röst, Matthias Mann, 2019, bioRxiv, accepted in Nature Methods

36 single HeLa cell proteomes

Unsupervised clustering and principal component analyis of 36 single HeLa cell proteomes

Biological process enrichment in the HeLa single cell proteome dataset

Deep Visual Proteomics

Andreas Mund

Fabian Coscia

Mann Lab(s):

Andreas Mund Fabian Coscia Andreas-David Brunner Florian Meier

Biological Research Centre,

Szeged
Peter Horvath La
Ferenc Kovacs
Andras Kriston
Réka Hollandi

Leica

Florian Hoffmann Christoph Greb Falk Schlaudraff

(Archived) patient tissue samples

Cancer

Eckert M,..., Mann M, Lengyel E 2019, Nature
Coscia F, ..., Mann M, Curtis M 2018, Cell
Doll S, ..., Mann M, 2018, Mol Oncology
Coscia F,..., Mann M, 2020, J Pathol

Metabolic diseases

Niu L, ... Mann M, 2019, Mol Syst Biol. Niu L, ... Mann M, 2019, in preparation

Neurodegenerative diseases

Liu JJ, ... Mann M, 2018, Science

(Archived) patient tissue samples

Eckert MA, Coscia F ... Mann M, Lengyel E, 2019, Nature

Image Segmentation with Deep Learning Training

Machine learning algorithms to predict cellular phenotypes

Horvath group

Laser Microdissection | Precise single cell isolation

approx.30.000 cells/day

Proteins specifically expressed in serous salivary glands

https://www.proteinatlas.org/humanproteome/tissue/salivary+gland

Cell type specific proteomes

Subcellular proteomics of individual cells

Top enriched in whole cells

membrane transport establishment of localization translational initiation translational elongation protein transport vesicle-mediated transport cellular ketone metabolic process translation organic acid metabolic process protein targeting small molecule metabolic process endoplasmic reticulum generation of precursor metabolites and energy vesicle cellular component disassembly heterocycle metabolic process plasma membrane nucleotide metabolic process ribosome

Top enriched in nuclei

nucleobase-containing compound metabolic process RNA metabolic process nucleoplasm cellular nitrogen compound metabolic process nitrogen compound metabolic process RNA processing macromolecule metabolic process RNA splicing mRNA processing chromosome organization spliceosomal complex nucleolus DNA metabolic process primary metabolic process chromatin organization response to DNA damage stimulus DNA repair chromatin modification metabolic process cellular metabolic process mRNA metabolic process nucleus chromatin remodeling complex

Fully automated single-nuclei isolation

Single cell isolation with subcellular spatial resolution

Phenotypic differences of 5 nuclei classes (DAPI dense regions) used for unsupervised clustering

5 nuclei classes (DAPI dense regions) show distinct proteomics profiles

5 nuclei classes (DAPI dense regions) show distinct proteomics profiles

Integrating image data with protein abundance for (sub)cellular phenotyping

Protein atlas

Deep visual proteomics

https://www.proteinatlas.org/

Thul PJ...Uhlén M, Lundberg E., 2017. A subcellular map of the human proteome. Science.

Systems biology at the imaging and at the proteomic levels

Protein atlas

https://www.proteinatlas.org/

Deep visual proteomics

MS signal high

low

Next directions...

It is going to be a lot of fun...

Oliver Raether
Stephanie
Kaspar-Schoenefeld
Markus Lubeck
Nagarjuna Nagaraj
Scarlet Koch
Heiner Koch
Mel Park

Center for Protein Research

Fabian Coscia

Andreas Mund

Biological Research Centre, Szeged

Peter Horvath Lab Réka Hollandi Ferenc Kovacs Andras Kriston

Leica

Florian Hoffmann Christoph Greb Falk Schlaudraff

Nicolai Bache
Ole Bjeld Horning
Peter Sondergaard
Dorte Bekker-Jensen

