Genome Chaos

Creating New System Information to Drive Macroevolution

Henry H. Heng

Wayne State University, Detroit

Current framework

Somatic Mutation Theory

Out of control growth

—

Phenotype

Key gene mutations

Genotype

Stepwise evolution

Process

Accumulated cancer gene mutations are key drivers

Cancer: new systems emergent from various constraints via evolution

Normal cell phase

Non-invasive phase

Drug sensitive phase

Transformed phase

Invasive phase

Drug resistant phase

Key shared phenotype: Phase Transition

Genome theory of Cancer Evolution

Systems replacement via macroevolution

Phase transition

Phenotype

Karyotype heterogeneity

Genotype

Genome chaos - Selecting

Mechanism

Two phased evolution

Process

Karyotype heterogeneity & non clonal chromosome aberrations (NCCAs)

They are not "noise" but transitional structures for creating new genomes for information surival

Watch evolution in action experiments

DNA clones differ from karyotype clones

Normal cells

Non clonal

Clonal

Post-immortal cells

(in vitro immortalization model: Li-Fraumeni fibroblast)

Two phased evolution

Macroevolution differs Microevolution + Time

Normal growth

Slower and heterogenous growth with cell death

Selected stable genome

Stable growth with transformed features

Phase transition is common for cancer

- Each run of evolution is achieved by different molecular pathways
- The evolutionary pattern unifies diverse molecular mechanisms of cancer

Karyotype heterogeneity is the common driver, but why?

Karyotype Coding

Karyotype organizes gene interactive network
Order of genes along chromosome is a new coding

Architecture is a key information

Gene codes "parts inheritance"
Karyotype codes "System inheritance"
Blueprint

Heng 2009, BioEssays Heng et al, 2011, Genomics Heng et al, 2013, Can Metastasis Rev

Karyotype defines transcriptome

Different successful karyotypes display different transcriptomes

Most animals and plants display unique karyotypesi

How genes are arranged within the genome matters

Genes + topo = function Species specific Sponges have 18,000 genes (immuneand neuro-), but no "designed" functions

Spatial is key information

Chromosome has 3D address; It impacts genes' function; position effect

Gene's order matters

Hox gene cluster; Histone gene cluster; Synteny: conserved blocks of gene order

Karyotype rules gene

Aneuploidy restores gene-/- phenotype; Translocation brings gene's new function

Karyotype and disease

Chromosome changes are overwhelming Better clinical prediction power

Mechanism of preserving karyotype coding

The main function of sexual reproduction is to maintain the karyotype for species identity

Maintaining gene coding

Replication by A-T and G-C pairing

clone

Fact: Asexual organisms and cell populations are not clonal!

Maintaining karyotype coding for sexual organisms

Meiotic pairing to check gene order

Fertilization and development eliminate altered karyotypes

Sexual reproduction = "Filter" to maintain "core" genome The genome defines species, the genes modify some features

"The conclusion is surprising: the initial function of chromosome pairing was to limit, not enhance, recombination". Wilkins AS, Holliday R. Genetics. 2009

Cancer evolution: no constraint of sexual reproduction

The main function of sexual reproduction is to maintain the karyotype for species identity

Mechanism of cancer: rapid and massive speciation by reorganizing genomes without constraint of sex

Genome chaos: rapid massive macroevolution

Re-organizing karyotypes to create new information

Chaotic genomes are responsible for phase transition Drug induces chaotic genomes (structural/numerical)

Pattern of chaotic genomes in phase transition: populational view

Causes: surival strategy under crisis via passing life-info Consequences: creating new species with new genomes The pattern of genome chaos is often predictable

Diverse stresses: Massive death chaos is active Diverse forms of chaotic karyotypes: micronuclei, translocations, giant cells, chromosome fragmentation

Population growth for Survived cells (new karyotypes).

A key mechanism for generating cellular mass of cancer

Parental genome prior to phase transition

Chaotic genomes under macroevolution

Microevolution with cancer genes and epigenetics

Implications in cancer research/treatment

- 1. Two-phased evolution is the key for research/diagnosis/treatment
- 2. Avoiding induced genome chaos should reduce drug resistance
- 3. Maximal killing initially reduces cancer cells, but could harm patients by induced genome chaos. Cancer is a game of outliers

ACKNOWLEDGMENTS

Anna Barke Donald Coffey Jim Crow **Peter Duesberg** YB Fu **Rafe Furst Bob Gatenby Wayt Gibbs Root Gorelick Gloria Heppner Steve Krawetz**

Jinsong Liu **Carlo Maley** O.J. Miller **Peter Moens Ken Pienta Harry Rubin** James Shapiro **Gary Stein Lap-Chee Tsui Douglas Wallace Karan Ye Adam Wilkins**

Christine Ye

Heng's group

Batoul Abdallal Steve Bremer Steven Horne Guo Liu Sarah Regan **Zachary Sharpe** Joshua Stevens

A new genomic coding system?

What defines a systems?
How does karyotype, impact system inheritance?

Gene centric inheritance: "Gene-protein-Phenotype" chromosomes are carrier of gene

- 1. Gene defined inheritance is limited ("Missing heritability")
- Gene codes: Parts inheritance; how to make parts (protein)
 New codes: System inheritance; how to organize genes'
 interaction, the blueprint

New genomic coding: organize gene interactive network Chromosome set is the highest genomic information