Harvard Origins of Life Initiative:

Building Blocks, Protocells & UV-driven Evolution

Dimitar Sasselov
Harvard University
The Harvard Origins of Life Initiative (HOLI)

HOLI Graduate Consortium astrobiology field trip to Iceland 2019
How do polynucleotide molecules, e.g. RNA, arise?

Sutherland Lab
Powner, Gerland & Sutherland (2009)
New Prebiotic Chemistry Paradigm

- **UV Light is central**

- **Cyano-sulfidic chemistry driven by hydrated electrons:**

\[
\begin{align*}
2 \times \text{Fe(II)} & \quad 2e^{-}_{\text{aq}} \\
\text{H}_2\text{O} & + \text{SO}_3^{2-} \\
\text{SO}_4^{2-} & + 2\text{H}^+ \\
\text{Fe(III)} & \quad \text{Fe(II)} \\
\text{H}_2\text{O} & + \cdot\text{SO}_3^{-} \\
\text{SO}_4^{2-} & + 2\text{H}^+ \\
\end{align*}
\]

Powner, Gerland & Sutherland (2009)
Ritson & Sutherland (2012)
Patel, Percivalle, Ritson & Sutherland (2015)
Xu, Ritson, Ranjan, Todd, Sasselov & Sutherland (2018)
New Prebiotic Chemistry Paradigm

- **UV Light** is central
 - Specific, mid-range UV light (aka UVC from 200 – 300 nm) 6 – 4 eV
 - Flux & Wavelength dependence

- Cyano-sulfidic chemistry driven by *hydrated electrons*:

\[
2 \times \text{Fe(II)} + 2e^{-} (\text{aq.}) + \text{SO}_4^{2-} + 2\text{H}^+ \rightarrow 2 \times \text{Fe(III)} + \text{H}_2\text{O} + \text{SO}_3^{2-}
\]

\[
\text{Fe(II)} \quad \text{h} \quad \text{Fe(III)} \quad \text{h} \quad e^{-}_\text{aq.}
\]

\[
\text{H}_2\text{O} + \text{SO}_3^{2-} \quad \text{h} \quad \text{H}_2\text{O} + \cdot\text{SO}_3^{-} \quad \text{SO}_4^{2-} + 2\text{H}^+
\]

HCN reductive homologation simple sugars, hydroxy acid & amino acid precursors

[Fe(CN)\text{6}]^{4-} & \text{SO}_3^{2-}
Know your UV light
UVC light reaches the surface of Early Earth, including through shallow water.
The **3 Roles** of Sun’s UVC Light

1. **UV-driven synthesis:** source of energy \((e.g., e^{-}_{aq}) \)

2. **UV-driven selection:** source of high yields & function

3. **UV-induced self-repair:** for polymers \((e.g., \text{RNA, DNA}) \), the transition from survival to biological function (?)
Protocells in the UV Light

Szostak Lab (2014): lipid vesicles retaining RNA strands (green)
The balance between UV damage & UV self-repair

Protocells in a population enable RNA strands to “explore” sequence space.

The protocells need to “live off the land”, until becoming self-sufficient.
The canonical RNA/DNA bases are the most UV photostable isomers of the synthesis.
The reason - Non-radiative deactivation: ultrafast internal conversion via a conical intersection

Beckstead et al. (2016)
Excited states of DNA strands decay to long-living damaging states! e.g., cause for skin cancer.

Bucher (2014)
Base-staking Enables Oligomer Damage

Bucher et al. (2014)
...but Base-*pairing* remedies that!
Certain sequences self-repair better & survive longer

Kufner et al. (2020)
UV sculpts the molecular inventory?

1) By selecting only UV-stable ones
 - We can screen ~200 isomers & by-products of the cyanosulfidic prebiotic chemistry

2) By selecting oligomers with UV-induced self-repair properties
SUMMARY

1. Stellar UV light is commonly cut off at 204 nm on the surfaces of rocky planets (mainly by CO$_2$).

2. Planet surface UV fluxes in this 4 - 6 eV range are uniquely suited to enact both the synthesis & the selectivity of the nucleotides, and a few amino acids. The canonical monomers also happen to be the most UV photostable isomers.

3. The oligomers appear to be selected by their ability to self-repair UVC damage by UV excitation – a photolyase-like mechanism.
Many Thanks to:

My talented students and postdocs (current and former):

Dr. Corinna Kufner
Dr. Zoe Todd
Dr. Sukrit Ranjan
Dr. Sarah Rugheimer

Dr. Amit Levi
Matthew Heising
Chris Magnani
Dr. Laura Schaefer